
From: D. J. Bernstein <djb@cr.yp.to>
To: pqc-comments@nist.gov
CC: pqc-forum@list.nist.gov
Subject: Re: [pqc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece
Date: Monday, July 04, 2022 05:58:54 PM ET
Attachments: smime.p7m

D. J. Bernstein, T. Lange, and C. Peters wrote:

> Our PQCrypto 2008 ISD algorithm is faster than the Eurocrypt 2022 ISD

> algorithm, on the CPUs selected in the new paper, for the challenges

> selected in the new paper, according to a direct comparison of (1) our

> measurements of the 2008 software (the 2+2 case of the 2008 algorithm)

> and (2) the speeds reported in the new paper for that paper's software.

As further confirmation, I used the 2008 software to run full attacks

on two EPYC 7742 CPUs (the 2022 paper selected these CPUs and used four

of them) against all three dimension-1223 Goppa challenges available

from https://decodingchallenge.org. (The 2022 paper covered one of the

dimension-1223 challenges and a dimension-1284 challenge.) All three

runs completed successfully without any surprises.

Thanks to the Fast Crypto Lab cluster at the Institute of Information

Science at Academia Sinica, Taiwan, for providing the dual EPYC 7742.

The exact time for any particular attack run is well known to have

considerable randomness, just like searching randomly for an AES key.

Because of the variance in run times, individual run times are not

statistically meaningful and should never be used to compare algorithms

of this type. However, I monitored wall-clock times, CPU times, cycle

counts (using RDTSC, which runs at 2.245GHz on these CPUs), and

iteration counts to check for any discrepancies across these numbers.

All three of the runs happened to be lucky, using, respectively, just

83%, 1.7%, and 83% of the average number of iterations (184 billion):

more precisely, 153022933873, 3111365348, 153926141900 iterations. Each

iteration took 1.68 million cycles (average; there was some variance, as

expected from the cache structure). The wall-clock times using 128 cores

Page 1 of 6

mailto:djb@cr.yp.to
mailto:pqc-comments@nist.gov
mailto:pqc-forum@list.nist.gov

D. J. Bernstein, T. Lange, and C. Peters wrote:

> Our PQCrypto 2008 ISD algorithm is faster than the Eurocrypt 2022 ISD

> algorithm, on the CPUs selected in the new paper, for the challenges

> selected in the new paper, according to a direct comparison of (1) our

> measurements of the 2008 software (the 2+2 case of the 2008 algorithm)

> and (2) the speeds reported in the new paper for that paper's software.

As further confirmation, I used the 2008 software to run full attacks

on two EPYC 7742 CPUs (the 2022 paper selected these CPUs and used four

of them) against all three dimension-1223 Goppa challenges available

from https://decodingchallenge.org. (The 2022 paper covered one of the

dimension-1223 challenges and a dimension-1284 challenge.) All three

runs completed successfully without any surprises.

Thanks to the Fast Crypto Lab cluster at the Institute of Information

Science at Academia Sinica, Taiwan, for providing the dual EPYC 7742.

The exact time for any particular attack run is well known to have

considerable randomness, just like searching randomly for an AES key.

Because of the variance in run times, individual run times are not

statistically meaningful and should never be used to compare algorithms

of this type. However, I monitored wall-clock times, CPU times, cycle

counts (using RDTSC, which runs at 2.245GHz on these CPUs), and

iteration counts to check for any discrepancies across these numbers.

All three of the runs happened to be lucky, using, respectively, just

83%, 1.7%, and 83% of the average number of iterations (184 billion):

more precisely, 153022933873, 3111365348, 153926141900 iterations. Each

iteration took 1.68 million cycles (average; there was some variance, as

expected from the cache structure). The wall-clock times using 128 cores

were about 248 hours, 5 hours, and 250 hours. Here are the CPU times and

wall-clock times in more detail:

 114454917.40user 497.65system 248:23:46elapsed 12799%CPU (0avgtext+0avgdata 15380maxresident)k

 2327597.87user 21.17system 5:03:05elapsed 12799%CPU (0avgtext+0avgdata 15488maxresident)k

 115167358.18user 200.05system 249:56:30elapsed 12799%CPU (0avgtext+0avgdata 15496maxresident)k

The output vectors for the three runs appear below, in the same order as

the "providers" on https://decodingchallenge.org.

It is natural to wonder whether lucky runs are actually an indication

that average iteration counts have been miscalculated. Here are three

independent ways to check the calculations.

The first is to run more experiments, meaning smaller runs for any given

CPU budget. For example, here are the iteration counts observed in

running the same code (with the same l=22, m=1, c=8) against a range of

smaller challenges from https://decodingchallenge.org:

 431 3.8% 154 4060 4033

 431 52.8% 2144 4060 4033

 431 60.0% 2435 4060 4033

 482 131.1% 18482 14101 14029

 482 220.7% 31120 14101 14029

 482 16.6% 2338 14101 14029

 534 45.2% 5341 11820 11748

 534 47.5% 5616 11820 11748

 534 2.6% 302 11820 11748

 587 33.2% 13600 40969 40766

 587 73.6% 30168 40969 40766

 587 9.6% 3937 40969 40766

 640 154.1% 225989 146688 146077

 640 51.2% 75132 146688 146077

 640 137.4% 201604 146688 146077

 695 131.9% 730398 553830 551850

 695 43.9% 243069 553830 551850

 695 1.1% 6030 553830 551850

 751 64.3% 6500820 10111752 10087366

 751 67.3% 6803082 10111752 10087366

 751 134.4% 13586235 10111752 10087366

 808 133.9% 55699927 41583562 41492753

 808 11.4% 4748656 41583562 41492753

 808 3.5% 1460929 41583562 41492753

 865 60.7% 96347036 158848155 158526591

 865 53.9% 85624754 158848155 158526591

 865 11.6% 18492422 158848155 158526591

 923 269.7% 1847405002 684909178 683634590

 923 174.9% 1197860601 684909178 683634590

 923 6.3% 43134954 684909178 683634590

 982 35.1% 974255720 2776326652 2771487282

 982 128.7% 3572455007 2776326652 2771487282

 982 24.1% 668935675 2776326652 2771487282

 1041 47.4% 236327577 498978858 497804860

 1041 248.1% 1237981333 498978858 497804860

 1041 170.7% 851782527 498978858 497804860

The first column is the dimension. The last two columns are the average

iteration counts calculated for type-1 and type-3 iterations, always

very close together. (The attack code uses type-2 iterations, which are

intermediate.) The third column is the observed iteration count for one

attack. The second column is the observed iteration count as a

percentage of the calculated average type-1 iteration count.

A graph of this distribution of percentages shows no evident anomalies

compared to graphs of percentages sampled from the calculated

distribution. The usual statistics do not show surprising p-values. One

can, of course, carry out many more experiments to pin down the

experimental average to within, e.g., 1% and check for a match with the

calculated average. The 2008 paper already reported doing this across

millions of experiments for small sizes.

The second way to check the calculations is to review the calculation

software, including (1) the formulas and (2) examples checked by hand.

This work was already done in 2008 for the C calculator available from

https://github.com/christianepeters/isdf2. I've further checked output

of the C calculator against a new Sage calculator for both "type 1" and

"type 3" iterations, and checked the Sage calculator against the Markov

chains described in the paper.

The third way to check the calculations is to do a much simpler

calculation of the number of _independent_ iterations, equivalent to

taking the c parameter much larger. Structurally, it's obvious that this

will be smaller than the actual number of iterations for (say) c=8, but

not _much_ smaller, since randomizing 8 columns has a considerable

chance of changing the error weight in the information set. For

dimension 1223, this calculation is an unsurprising 7% smaller than the

185 billion calculated for c=8.

The average 185 billion iterations at 1.68 million cycles/iteration for

the 2008 software match the 6.28 days reported in README in

 https://cr.yp.to/software/lowweight-20220616.tar.gz

for the dimension-1223 challenges on four EPYC 7742 CPUs. This is faster

than the 8.22 days reported at the bottom of page 12 of the 2022 paper

for the calculated average time for that paper's AVX2-specific software

attacking those challenges on those CPUs.

The 2022 paper claims to "demonstrate that these algorithms lead to

significant speedups for practical cryptanalysis on medium-sized

instances (around 60 bit)"; concretely, it says "12.46 and 17.85 times

faster on the McEliece-1284 challenge and 9.56 and 20.36 times faster on

the McEliece-1223 instance than [14] and [24]". But [14] and [24] are

missing various speedups from the 2008 paper. The 2022 paper failed to

compare the speed of its algorithm to the speed of the 2008 algorithm.

The README from https://cr.yp.to/software/lowweight-20220616.tar.gz also

runs through known speedups not included in the 2008 software, and

concludes as follows:

 Overall it would not be surprising if at least half of the attack cycles

 can be removed on current CPUs compared to the 2008 code running on

 current CPUs. A much larger reduction in attack cost from 2008 to 2022

 has come from changes in hardware: computers do more per cycle and cost

 less per cycle. Accounting for continued improvements in technology is

 an important part of selecting cryptosystem parameters.

---D. J. Bernstein

positions 606 518 167 959 461 163 190 302 1204 206 812 668 947 240 368 837 187 1117 829 723 1160 1014 913

sorted 163 167 187 190 206 240 302 368 461 518 606 668 723 812 829 837 913 947 959 1014 1117 1160 1204

vector 00010001000000000000000000010010000000000000001000000000000000000000000000000000100010001001001000100010010010000000000000000100000001000100000000000000000000000000000000010000000000010010010010001000000000000000000

positions 101 1073 350 529 519 827 1210 410 1038 797 479 906 418 403 342 575 146 397 805 226 716 704 102

sorted 101 102 146 226 342 350 397 403 410 418 479 519 529 575 704 716 797 805 827 906 1038 1073 1210

vector 0001100010001000100000001001000001000000100000001001000000000000000000000000000000000000000100000000010001001000000000001001000000010000000000000000000001001000100000000000000000000000000000000001001000000000000

positions 797 450 705 1107 1005 658 1068 345 866 952 335 849 134 987 943 900 553 16 577 407 904 631 1162

sorted 16 134 335 345 407 450 553 577 631 658 705 797 849 866 900 904 943 952 987 1005 1068 1107 1162

vector 0000000000000000100010010000000001000100100100000000000000000000000100010000000000000000000000000010010001000100000000000000001000000000000000000000000000000000100010000000000000000000000000000000000000010000000010000000000000000000000000000000000100000000000000000100100000000000000000000000000000000000000100100

-----BEGIN PGP SIGNATURE-----

iQIzBAEBCAAdFiEE3QolqQXydru4e4ITsMANTjsOVFkFAmLDYjIACgkQsMANTjsO

VFk8BxAAne0k8lEPlkKpqazv39YG1/H1aXGbAs3qLZBh7shhI1mQKh+84Y48AdtU

4y8n5JAg1tVn3TO0LSxlqkFqnAzz3v9pI5h4U3+YLJgjBk7hhKIYagdnvc3hlXb0

mDDvvjJa0K+K620244fqlg6nbPzl4EGtAe8lSKQWhVs/Z6Pl7+odckrO9TVQsecX

849rqhWgwBH/nSAtVUyMe+fs2urGvagE0B2BArpP9WX6cLWKT66BZKDyXEmWR69x

28LntPtcw4cFoR4UfQ+Le8GF/2aUZjH+GoR3BIa2jZuyYqUYt4E1hiRqE8Zqp76s

O97yjm9c8w3QFNMFc7nVGZ7Aavzx+JpndJuFn1In4ZwZgn8VAwcuhDvsaM+yGxu4

Th5YiiSW2bm0bx5leXQQnCNJ6IW6B/hqf1cwg+6ltuxXeamGELgiwoF5MtUOfsxU

3PwO5h0PzmZH4k9am+tIfxajvWWaaqm0j1l7OmqIYymL5aBN+sEjOqz3LAL62npA

2XxX66+ryAr5QO+Pok1mClSSYp7L+pzMj9UbhFC+HfVuHfWjQ4EwtdJtMJEG3OcT

RDrTklYAsBCtJGR2DBJ/sADSN2mjXjCsTLVuslA6k/CdZI3FpQ8apyPCioGcWPeG

eGNljgG4eMdAUwF14mHoL/DOFCuxEvW4s13AVuJBUP+fXI5vB+0=

=R/3h

-----END PGP SIGNATURE-----

were about 248 hours, 5 hours, and 250 hours. Here are the CPU times and

wall-clock times in more detail:

 114454917.40user 497.65system 248:23:46elapsed 12799%CPU (0avgtext+0avgdata

15380maxresident)k

 2327597.87user 21.17system 5:03:05elapsed 12799%CPU (0avgtext+0avgdata

15488maxresident)k

 115167358.18user 200.05system 249:56:30elapsed 12799%CPU (0avgtext+0avgdata

15496maxresident)k

The output vectors for the three runs appear below, in the same order as

the "providers" on https://decodingchallenge.org.

It is natural to wonder whether lucky runs are actually an indication

that average iteration counts have been miscalculated. Here are three

independent ways to check the calculations.

The first is to run more experiments, meaning smaller runs for any given

CPU budget. For example, here are the iteration counts observed in

running the same code (with the same l=22, m=1, c=8) against a range of

smaller challenges from https://decodingchallenge.org:

 431 3.8% 154 4060 4033

 431 52.8% 2144 4060 4033

 431 60.0% 2435 4060 4033

 482 131.1% 18482 14101 14029

 482 220.7% 31120 14101 14029

 482 16.6% 2338 14101 14029

 534 45.2% 5341 11820 11748

 534 47.5% 5616 11820 11748

 534 2.6% 302 11820 11748

 587 33.2% 13600 40969 40766

 587 73.6% 30168 40969 40766

 587 9.6% 3937 40969 40766

 640 154.1% 225989 146688 146077

 640 51.2% 75132 146688 146077

 640 137.4% 201604 146688 146077

D. J. Bernstein <djb@cr.yp.to>

Page 2 of 6

 695 131.9% 730398 553830 551850

 695 43.9% 243069 553830 551850

 695 1.1% 6030 553830 551850

 751 64.3% 6500820 10111752 10087366

 751 67.3% 6803082 10111752 10087366

 751 134.4% 13586235 10111752 10087366

 808 133.9% 55699927 41583562 41492753

 808 11.4% 4748656 41583562 41492753

 808 3.5% 1460929 41583562 41492753

 865 60.7% 96347036 158848155 158526591

 865 53.9% 85624754 158848155 158526591

 865 11.6% 18492422 158848155 158526591

 923 269.7% 1847405002 684909178 683634590

 923 174.9% 1197860601 684909178 683634590

 923 6.3% 43134954 684909178 683634590

 982 35.1% 974255720 2776326652 2771487282

 982 128.7% 3572455007 2776326652 2771487282

 982 24.1% 668935675 2776326652 2771487282

 1041 47.4% 236327577 498978858 497804860

 1041 248.1% 1237981333 498978858 497804860

 1041 170.7% 851782527 498978858 497804860

The first column is the dimension. The last two columns are the average

iteration counts calculated for type-1 and type-3 iterations, always

very close together. (The attack code uses type-2 iterations, which are

intermediate.) The third column is the observed iteration count for one

attack. The second column is the observed iteration count as a

percentage of the calculated average type-1 iteration count.

A graph of this distribution of percentages shows no evident anomalies

compared to graphs of percentages sampled from the calculated

distribution. The usual statistics do not show surprising p-values. One

can, of course, carry out many more experiments to pin down the

experimental average to within, e.g., 1% and check for a match with the

calculated average. The 2008 paper already reported doing this across

millions of experiments for small sizes.

D. J. Bernstein <djb@cr.yp.to>

Page 3 of 6

The second way to check the calculations is to review the calculation

software, including (1) the formulas and (2) examples checked by hand.

This work was already done in 2008 for the C calculator available from

https://github.com/christianepeters/isdf2. I've further checked output

of the C calculator against a new Sage calculator for both "type 1" and

"type 3" iterations, and checked the Sage calculator against the Markov

chains described in the paper.

The third way to check the calculations is to do a much simpler

calculation of the number of _independent_ iterations, equivalent to

taking the c parameter much larger. Structurally, it's obvious that this

will be smaller than the actual number of iterations for (say) c=8, but

not _much_ smaller, since randomizing 8 columns has a considerable

chance of changing the error weight in the information set. For

dimension 1223, this calculation is an unsurprising 7% smaller than the

185 billion calculated for c=8.

The average 185 billion iterations at 1.68 million cycles/iteration for

the 2008 software match the 6.28 days reported in README in

 https://cr.yp.to/software/lowweight-20220616.tar.gz

for the dimension-1223 challenges on four EPYC 7742 CPUs. This is faster

than the 8.22 days reported at the bottom of page 12 of the 2022 paper

for the calculated average time for that paper's AVX2-specific software

attacking those challenges on those CPUs.

The 2022 paper claims to "demonstrate that these algorithms lead to

significant speedups for practical cryptanalysis on medium-sized

instances (around 60 bit)"; concretely, it says "12.46 and 17.85 times

faster on the McEliece-1284 challenge and 9.56 and 20.36 times faster on

the McEliece-1223 instance than [14] and [24]". But [14] and [24] are

missing various speedups from the 2008 paper. The 2022 paper failed to

compare the speed of its algorithm to the speed of the 2008 algorithm.

The README from https://cr.yp.to/software/lowweight-20220616.tar.gz also

runs through known speedups not included in the 2008 software, and

D. J. Bernstein <djb@cr.yp.to>

Page 4 of 6

concludes as follows:

 Overall it would not be surprising if at least half of the attack cycles

 can be removed on current CPUs compared to the 2008 code running on

 current CPUs. A much larger reduction in attack cost from 2008 to 2022

 has come from changes in hardware: computers do more per cycle and cost

 less per cycle. Accounting for continued improvements in technology is

 an important part of selecting cryptosystem parameters.

---D. J. Bernstein

positions 606 518 167 959 461 163 190 302 1204 206 812 668 947 240 368 837 187 1117

829 723 1160 1014 913

sorted 163 167 187 190 206 240 302 368 461 518 606 668 723 812 829 837 913 947 959

1014 1117 1160 1204

vector

000

001000100

0000000000000000010010000000000000001000000000000000000000000000000000100000000000000

00010000000000000000000000000000000000000

0000000000000000000000000000100

000000000000000000000000000000000000100

00000000100

000000000001000100000000000

0001000

00010000000000000000100000001000000000000

0001000000000000000000000

000000000000100000000000100100000

000

000000000000100100000000000000000000000000000

000000000000001000000000000000000

positions 101 1073 350 529 519 827 1210 410 1038 797 479 906 418 403 342 575 146 397

805 226 716 704 102

sorted 101 102 146 226 342 350 397 403 410 418 479 519 529 575 704 716 797 805 827

906 1038 1073 1210

D. J. Bernstein <djb@cr.yp.to>

Page 5 of 6

vector

000

000000000000000011000100000000000000000000000

0010000000000000000000000000000

000

00100000001001000001000000100000001000000

001000000000000000000000000000000

0000000001000000000100010000000000000000000

000

000000000000000000000000100000000000100

0000000000000000000000000000000010000000100000000000000000000010000000000000000000000

0010000000000000000000000000000

000

0000000000000000001000000000000000000000000000000000010000000000000000000000000000000

000

000000000000000000001000000000000

positions 797 450 705 1107 1005 658 1068 345 866 952 335 849 134 987 943 900 553 16

577 407 904 631 1162

sorted 16 134 335 345 407 450 553 577 631 658 705 797 849 866 900 904 943 952 987

1005 1068 1107 1162

vector

0000000000000000100

000100000000000000000000000000000000000

000

0010000

000001000100000000000000000

00000000000000000000000001000

000100000000000000000000000100000000000000000

0000000000000000000000000000000000001000000000000000000000000001000000000000000000000

00000000000000000000000001000

0000000000000000000000000000000010001

0000000000000000100000000000000000000000000000000010001000000000000000000000000000000

0000000010000000010000000000000000000000000000000000100000000000000000100000000000000

001000000000000000000000000000000000000

001001000000000000000000000000000

000000000000000000000000000000000

D. J. Bernstein <djb@cr.yp.to>

Page 6 of 6

	1. 2022-07-04 17:58- D. J. Bernstein

